metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

7-{Diphenyl[(triphenylphosphine)aurio]phosphine(1+)-*P*}-8-methyl-7,8dicarba-*nido*-undecaborate(1–) dichloromethane hemisolvate

Olga Crespo,^a M. Concepción Gimeno,^a Peter G. Jones^{b*} and Antonio Laguna^a

^aDepartamento de Química Inorgánica, Universidad de Zaragoza–CSIC, Instituto de Ciencia de Materiales de Aragón, 50009 Zaragoza, Spain, and ^bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany Correspondence e-mail: jones@xray36.anchem.nat.tu-bs.de

Received 2 June 1999 Accepted 5 November 1999

The title compound, 7-[(Ph₂P)Au(PPh₃)]-8-(CH₃)-7,8-*nido*-C₂B₉H₁₀]·0.5CH₂Cl₂ or [Au(C₁₅H₂₃B₉P)(C₁₈H₁₅P)]·0.5-CH₂Cl₂, is the first reported gold derivative of the ligand [7-(Ph₂P)-8-(CH₃)-7,8-*nido*-C₂B₉H₁₀]⁻. It has a mononuclear structure with the gold centre in an essentially linear coordination [P-Au-P 174.041 (15)°]. The open C₂B₃ face contains one H atom that is strongly bonded to the central B atom and semi-bridging to a neighbouring B atom [B-H distances 1.070 (16) and 1.45 (3) Å].

Comment

We are interested in *closo-* and *nido-*carborane derivatives, and have reported several complexes in which a gold moiety is coordinated to the anionic *nido-*diphosphine ligand 7,8-bis-(diphenylphosphino)-7,8-dicarba-*nido-*undecaborate(1–) (Crespo, Gimeno, Laguna & Jones, 1996; Crespo *et al.*, 1997, 1998). We report here the structure of the neutral title complex 7-{diphenyl[(triphenylphosphine)aurio]phosphine(1+)-*P*}-8-methyl-7,8-dicarba-*nido-*undecaborate(1–)

dichloromethane hemisolvate, (I). The synthetic reaction (see *Experimental*) results in the coordination of an {Au(PPh₃)} fragment and partial degradation of the icosahedral carborane phosphine 1-(Ph₂P)-2-(CH₃)-1,2-*closo*-C₂B₁₀H₁₀. The product is the first reported gold derivative of the parent carbaboryl-phosphine and one of the few metallorganic derivatives described with the *nido*-phosphine [7-(Ph₂P)-8-(CH₃)-7,8-*nido*-C₂B₉H₁₀]⁻ (*cf.* Viñas *et al.*, 1996).

The molecular structure of the title compound (solvent omitted). Ellipsoids are drawn at the 50% probability level and H-atom radii are arbitrary. The semi-bridging H02B-B1 interaction is indicated by a dashed line (see text).

The structural study of (I) (Fig. 1) reveals for the C_2B_9 cage a geometry corresponding to an icosahedron from which one vertex has been removed. The C1-C2 distance of 1.588 (2) Å is shorter than that found in the corresponding *closo*-phosphine $1-(Ph_2P)-2-(CH_3)-1,2-closo-C_2B_{10}H_{10}$ [1.702 (6) Å; Kivekäs et al., 1994], but very similar to those observed in the various ruthenium complexes, which range from 1.538 (9) Å in $[Ru{7-(PPh_2)-8-(CH_3)-7,8-C_2B_9H_{10}]_2]$ (Viñas et al., 1995) to 1.561 (8) Å in $[RuCl{7-(PPh_2)-8-(CH_3)-7,8-C_2B_9H_{10}](PPh_3)_2]$ (Viñas et al., 1996). The P1-Au-P2 fragment shows the linearity usually associated with two-coordinate gold(I) complexes, with Au-P distances of 2.3060(5) and 2.3159 (5) Å, and a P-Au-P angle of 174.041 (15)°. A search of the Cambridge Structural Database (Allen & Kennard, 1993) for neutral molecules containing the P-Au-P group yielded 12 hits with a mean Au-P bond length of 2.317 Å.

The 'extra' H atom (H02B) in the pentagonal C_2B_3 open face (atoms C1, C2, B1, B2 and B3; B2 bears two H atoms) is strongly bonded to the central B atom [B2-H02B] 1.070 (16) Å], but can be considered as semi-bridging to B1 [B1-H02B 1.45 (3) Å]. This distance is similar to those in related derivatives such as $[AuCl_2\{(PPh_2)_2C_2B_9H_{10}\}]$ (1.37 Å; Jones et al., 1997), $[Au\{(PPh_2)_2C_2B_9H_{10}\}\{(PPh_2)_2C_2B_{10}H_{10}\}]$ $(1.35 \text{ Å}; \text{ Crespo et al., 1997}) \text{ or } [Au_2(C_{26}H_{30}B_9C_2)(C_6F_5)]$ CH_2Cl_2 [1.50 (8) Å; Crespo *et al.*, 1998]. We attributed the imprecision of these values to the presence of heavy atoms; the current structure is appreciably more precise despite the presence of gold. We have observed a similar arrangement of H atoms in silver complexes of the open-face carborane ligand (Crespo, Gimeno, Jones & Laguna, 1996) and in the light-atom derivative $[C_2B_9H_{10}(SC_5H_4NH)_2)](CF_3SO_3)$, in which the H atoms were freely refined, clearly showing the semi-bridging nature of this H atom [B-H distances 1.12 (3) and 1.39 (3) Å; Jones et al., 1997].

Experimental

To a suspension of 1-(Ph₂P)-2-(CH₃)-1,2-*nido*-C₂B₁₀H₁₀ (0.034 g, 0.1 mmol; Kivekäs *et al.*, 1994) in ethanol (30 ml), [Au(PPh₃)(SC₄H₈)]ClO₄ (0.096 g, 0.15 mmol) was added. The mixture was refluxed for 30 min and the complex (a white solid) filtered off and washed with ethanol (10 ml) (yield: 72%). Analysis calculated for C₃₃H₃₈AuB₉P₂: C 50.05, H 4.08%; found: C 49.65, H 4.6%. NMR data: ³¹P{¹H} (*AB* system) 17.21 p.p.m., *J* = 327.5 Hz; ¹H -2.25 (*m, br*, 1H), 1.41 (*s*, 3H, CH₃), 6.7–7.8 (*m, br*, 15H, C₆H₅) p.p.m. Single crystals were obtained from an *n*-heptane–dichloromethane solution.

Crystal data

$[Au(C_{15}H_{23}B_9P)(C_{18}H_{15}P)]$	Z = 2
$0.5CH_2Cl_2$	$D_x = 1.481 \text{ Mg m}^{-3}$
$M_r = 833.29$	Mo $K\alpha$ radiation
Triclinic, P1	Cell parameters from 8011
a = 11.3770 (8) Å	reflections
b = 12.5180 (10) Å	$\theta = 2-28^{\circ}$
c = 15.4837 (12) Å	$\mu = 4.116 \text{ mm}^{-1}$
$\alpha = 69.925 \ (3)^{\circ}$	T = 143 (2) K
$\beta = 72.338(3)^{\circ}$	Irregular wedge, colourless
$\gamma = 66.953 (3)^{\circ}$	$0.29 \times 0.22 \times 0.16 \text{ mm}$
V = 1869.1 (2) Å ³	

Data collection

Bruker SMART 1000 CCD	10 779 independent reflections
diffractometer	9788 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.017$
Absorption correction: multi-scan	$\theta_{\rm max} = 30^{\circ}$
(SADABS; Bruker, 1998)	$h = -15 \rightarrow 16$
$T_{\min} = 0.400, \ T_{\max} = 0.518$	$k = -17 \rightarrow 17$
22 230 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.020$	independent and constrained
$wR(F^2) = 0.048$	refinement
S = 0.990	$w = 1/[\sigma^2(F_o^2) + (0.0291P)^2]$
10 779 reflections	where $P = (F_o^2 + 2F_c^2)/3$
445 parameters	$(\Delta/\sigma)_{\rm max} = 0.027$
	$\Delta \rho_{\rm max} = 1.07 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.81 \text{ e} \text{ Å}^{-3}$

The dichloromethane solvate molecule is disordered over an inversion centre; C–Cl bond lengths were restrained to be equal. The high displacement parameters of this molecule may indicate partial occupation. All non-H atoms, except solvent C atoms, were refined anisotropically. H atoms of the carbaborane open face were located in difference syntheses and refined freely, but with B–H distances restrained to be equal. The methyl H atoms were identified from difference syntheses, idealized and refined as a rigid group allowed to rotate but not tip. Other H atoms were included using a riding model. A total of 433 restraints were applied, involving local phenyl-ring symmetry and light-atom displacement parameters, in addition to the B–H restraints. The largest feature of residual electron density (1.07 e Å⁻³) is 0.79 Å from the Au atom.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve

Table 1

Selected geometric parameters (Å, °).

Au-P2	2.3060 (5)	C1-C2	1.588 (2)
Au-P1	2.3159 (5)	C2-C3	1.510 (2)
P1-C11	1.8072 (18)	B1-H01	1.056 (15)
P1-C21	1.8158 (18)	B2-H02A	1.070 (15)
P1-C1	1.8197 (17)	B2-H02B	1.070 (16)
P2-C41	1.808 (2)	B3-H03	1.074 (15)
P2-C31	1.8130 (19)	B1-H02B	1.45 (3)
P2-C51	1.8153 (18)		
P2-Au-P1	174.041 (15)	C41-P2-C51	105.28 (9)
C11-P1-C21	104.95 (8)	C31-P2-C51	106.42 (8)
C11-P1-C1	106.93 (8)	C41-P2-Au	113.87 (6)
C21-P1-C1	108.63 (8)	C31-P2-Au	113.12 (6)
C11-P1-Au	110.30 (6)	C51-P2-Au	108.33 (6)
C21-P1-Au	111.18 (6)	H02A-B2-H02B	110.2 (18)
C1-P1-Au	114.35 (6)	B2-H02B-B1	93.7 (17)
C41-P2-C31	109.24 (9)		

structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL*97.

This work was supported by the DGES (PB-97-1010-C02-01) and the Fonds der Chemischen Industrie. We thank Mr A. Weinkauf for technical assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1352). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.

- Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Crespo, O., Gimeno, M. C., Jones, P. G. & Laguna, A. (1996). J. Chem. Soc. Dalton Trans. pp. 4583–4588.
- Crespo, O., Gimeno, M. C., Jones, P. G., Laguna, A. & Villacampa, M. D. (1997). Angew. Chem. Int. Ed. Engl. 36, 993–995.
- Crespo, O., Gimeno, M. C., Laguna, A. & Jones, P. G. (1996). *Inorg. Chem.* 35, 1361–1366.
- Crespo, O., Gimeno, M. C., Laguna, A. & Villacampa, M. D. (1998). *Acta Cryst.* C54, 203–205.
- Jones, P. G., Crespo, O., Gimeno, M. C., Laguna, A. & Villacampa, M. D. (1997). Acta Cryst. C53, 570–572.
- Kivekäs, R., Sillanpää, R., Teixidor, F., Viñas, C. & Núñez, R. (1994). Acta Cryst. C50, 2027–2030.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Viñas, C., Núñez, R., Flores, M. A., Teixidor, F., Kivekäs, R. & Sillanpää, R. (1995). Organometallics, 14, 3952–3957.
- Viñas, C., Núñez, R., Teixidor, F., Kivekäs, R. & Sillanpää, R. (1996). Organometallics, 15, 3850–3858.